
Nomenclature:

Identifier type Rules for naming Examples

Major Classes

(programs that

will be

downloaded to

the robot and

run)

Class names should be nouns

in UpperCamelCase , with the first letter of

every word capitalized. Use whole words —

avoid acronyms and abbreviations (unless

the abbreviation is much more widely used

than the long form, such as URL or HTML).

The tele-op program can simply be called

“TeleOp” and the version number. If multiple

programs are needed for different drive

teams, then “TeleOp” can be followed by the

driver name. (i. e. TeleOpSteve2.11.9)

Autonomous program names must start with

“Auto”, then “Red” or “Blue” (if the field

requires mirrored or otherwise different

programs for each side), and its purpose

(where it’s scoring).

If a delay is added, the number of seconds it

waits should be added after the alliance color

with an “s” after the number (see example).

If a menu program is created, the

autonomous program can simply be called

“AutoMenu” and the version number.

 For an autonomous on the

blue side of the field with a 10

second delay that will score in

the center goal, version 1.6.3

would be named:

AutoBlue10sCenter1.6.3

Minor Classes

(classes that

are included in

Major Classes)

Class names should be nouns

in UpperCamelCase , with the first letter of

every word capitalized. Use whole words —

avoid acronyms and abbreviations (unless

the abbreviation is much more widely used

 class DriveFunction;

 class IRSensing;

https://en.wikipedia.org/wiki/CamelCase
https://en.wikipedia.org/wiki/CamelCase

than the long form, such as URL or HTML).

Classes should be named such that their

purpose is easily identifiable from the name.

Methods

Methods should be verbs

in lowerCamelCase or a multi-word name

that begins with a verb in lowercase; that is,

with the first letter lowercase and the first

letters of subsequent words in uppercase.

 brake();

 calibrateGyro();

 getColor();

Variables

Local variables, instance variables, and class

variables are also written

in lowerCamelCase .

Variable names should be short yet

meaningful. The choice of a variable name

should be mnemonic— that is, designed to

indicate to the casual observer the intent of

its use. One-character variable names should

be avoided except for temporary "throwaway"

variables. Common names for temporary

variables are i, j, k, m, and n for integers; c, d,

and e for characters.

 int i;

 char c;

 float myWidth;

Constants

Constants should be written in uppercase

characters separated by underscores.

Constant names may also contain digits if

appropriate, but not as the first character.

 static final int

MAX_DISTANCE = 10;

Motors

Motor names should be nouns

in lowerCamelCase.

Drive motors should start with “r” or “l” to

denote right or left sides of the robot, then

“Drive” to indicate it is a drive motor, and (if

there is more than one drive motor per side) a

number (1, 2, etc.).

Other motors should include their function

(Lift, collection, etc.), “Motor”, and a number if

there are multiple motors allocated to that

 Dcmotor rDrive1

 Dcmotor collectionMotor

 Dcmotor liftMotor6

https://en.wikipedia.org/wiki/CamelCase
https://en.wikipedia.org/wiki/CamelCase
https://en.wikipedia.org/wiki/CamelCase

function.

Servos

Servo names should be nouns

in lowerCamelCase.

Names should start with their function,

“Servo”, and a number if there are multiple

servos allocated to that function.

If two servos are for the same function but

need to be further identified (i. e. they need to

be programmed separately), a letter

indication as to its location can be added at

the beginning of the name(r=right, l=left,

u=up, d=down, f=front, b=back).

 Servo iceCreamServo

 Servo rClawServo

 Servo bClimberServo

Sensors

Sensor names should be nouns

in lowerCamelCase.

Names should start with the sensor type,

“Sensor” and then a number if there multiple

sensors of that type.

 GyroSensor gyroSensor

 ColorSensor colorSensor3

Versioning:

Version Rules for versioning Examples

Overview

We will be using semantic versioning

2.0.0.

Given a version number

MAJOR.MINOR.PATCH, increment the:

1. MAJOR version when you make

incompatible API changes

(revamp an autonomous

program),

2. MINOR version when you add

functionality in a backwards-

compatible manner, and (make

1. If I add multiple things into the tele-

op and change some servo values

that would all be one MINOR

version. If I only changed some

drive distances, then I only need to

move up one PATCH version

when I push it to GitHub.

2. If I am working on autonomous

1.8.6, and add more functionality, it

would bump the MINOR version up

by 1, and reset the PATCH version

to 0, meaning I will be pushing

version 1.9.0 to GitHub.

https://en.wikipedia.org/wiki/CamelCase
https://en.wikipedia.org/wiki/CamelCase
http://semver.org/
http://semver.org/

the autonomous do more stuff)

3. PATCH version when you make

backwards-compatible bug fixes

(change values for drive

distance, sensor reading, etc.)

You should not jump multiple versions

if you make multiple edits in one

session (see example 1).

Once you release a new version, lower

version types are reset to 0 (see

example 2).

Pre-

release

version

Before a program is fully functional, it is

in a “pre-release” stage. In this case the

MAJOR version will be 0, and the MINOR

and PATCH versions will change when

you add and edit material.

Before the Tele-op is fully functional it will be

in version 0.x.y. Every time you add some

functionality (a new motor is programmed in)

you go up to a new MINOR version. Every

time you change some values (a servo

position) you can release a PATCH version.

Release

Versions

Once a program is fully functional (it

accomplishes everything it is supposed

to for the next competition) it will be in

MAJOR version 1.x.y.

If a MAJOR version is completed but

after the competition you want to add

more points in autonomous or majorly

revamp the tele-op, you will need to go

up to a new MAJOR version once all new

changes are completed.

If you are only going to be tweaking, you

can continue with MINOR and PATCH

versions.

If I finish an autonomous program for the first

competition and then make some tweaks, it

could be up to version 1.2.3. Then if after the

competition we decide to add more to the

autonomous, we would continue upgrading

the MINOR and PATCH versions until all the

new parts are fully functional. At that point it

would be at version 2.0.0, and would continue

being improved from there.

