
Engineering Design Process Applied to FTC And Our Building Strategy

Robo Raiders FTC #7129 camroboraiders@gmail.com

Design Process

PROBLEM DEFINITION

- Gathering information
- Stating problem and solution
- Defining specific requirements

Revise Problem Understanding **CONCEPT GENERATION**

- Generating ideas
 - Screening ideas
- Defining solution concepts
 - Selecting best concept

Revise Solution Concept

SOLUTION COMPLETION

- Designing for function
- Designing for reliability
 - Building with care
 - Testing the solution
- Refining for top performance

ROBO RAIDERS

Problem Definition

• Read the Game Manual!

- Includes valuable information regarding the game challenge
- Define the problem using the Game Manual.
- Create criteria that your robot must fulfill,
 - Consider things such as speed of scoring, success rate, robot speed, weight, etc.
 - Criteria need to be Specific, Measurable,
 Attainable, Relevant, and Time-Bound (S.M.A.R.T.).

Concept Generation

- Research mechanisms already used for the type of task.
 - Scoop for block party
 All terrain drivetrains
- Brainstorm!
 - Get as many ideas on the table as possible.
 - Some ideas that sound crazy at first can morph into something really good.

Selecting Your Concepts

- Don't just pick an idea and run with it.
 - You need to know that your concept will work well and be effective.
- Prototype
 - Cardboard, Tetrix, Lego, etc.
- Decide using a decision matrix.
 - Ensures that you have a rationale for your concept
 - Makes you think through the strengths and weaknesses of an idea

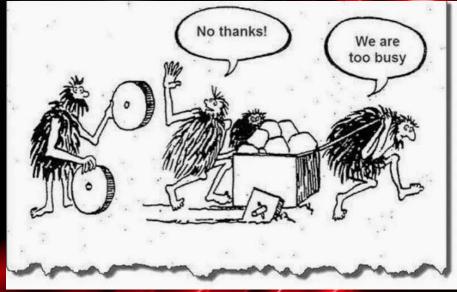
Example Decision Matrix

Criteria:	Weight: (1-3)	Holonomic	Mechanum	Skid Steer	Tank tread
Maneuverability	2	5	4	3	3
Traction	3	2	3	4	5
Programming Accuracy	1	2	2	5	5
Durability	3	3	4	5	4
Speed	2	3	4	5	1
Total:		33	39	48	40

Building the First Iteration

• System Envelope

- Sketch one out on paper (preferably in your Notebook).
- Consider the location of your battery, phone, other electronics, drivetrain, actuators, etc.
- Initial CAD
- Refine CAD


– Look over the CAD from before, and find ways to improve your design. Are the motors easy to get to? Can you change out the battery quickly?

Building the First Iteration

- Design Review
 - Look at how your design compares to your criteria.
 - Check to make sure everything makes sense and will work together well.

• Build it! - Use your CAD.

Testing and Refinement

- Test, test, test, test, test...
 - When testing, be sure to record your data.
 - Which parts fail the most often and affect your performance the most?
 - We test in Tens.
- Test everything!
 - Autonomous, tele-op scoring, individual functions
- Refine

Things to Remember

- The Design Process can be used in many ways.
 - Designing robots, deciding on a notebook template, and structuring your team
- Don't be afraid to make changes.
 - Test your new solution before you replace the old one.
- Remember the end goal.
 - Winning competitions is great, but it isn't what matters.
 - Who wouldn't want to do something like FTC for a living?

Strategic Design

- Creating a cool robot is super fun!
 - Creating a cool robot that does well in competition is even more fun
- Does your team have an aim for your robot this year?
 - If you want to hit a target, you have to know what you are aiming at. -Someone

Strategic Design

- Very hard to go through the build process without a concrete aim
 - The clear choice is success in competition
 - Lots of other (secondary) objectives: aesthetics, design elegance, coolness factor, etc.
- Beware of the "cool factor"

 It can be fun, but sacrificing effectiveness hurts you and your partner

Cost-Benefit Analysis

- For each task you must compare the difficulty of accomplishment to the reward for doing so
 - Little balls VS big balls last year
- The best tasks to perform are those which are relatively easy, yet provide big points
- Remember denying your opponents 10 points is just as good as scoring 10 points (at least in terms of win/loss)

Golden Rules

• Golden Rule #1:

- Always build within your team's limits
 - Evaluate your abilities and resources honestly and realistically
 - Limits are defined by manpower, budget, experience
 - Avoid building unnecessarily complex functions
 - On the other hand, as you get more experienced, start cautiously pushing a few boundaries

Golden Rules

• Golden Rule #2:

If a team has 30 units of robot and functions have maximum of 10 units, better to have 3 functions at 10/10 instead of 5 at 6/10

Other Tips on Strategy

- This strategic analysis is a MUST
 - There's a tendency to skip this stage, and to head straight into design and implementation
- You must know what you want to do before you can figure out how to do it
- Be realistic when evaluating strategies
 No one picked up small balls last year.

Other Tips on Strategy

- Try to identify the different types of robots that will exist
 - Go through the different permutations of alliances
 - e.g. How would we do paired with type 'X', against type 'Y' and type 'Z'
- What would we do if we had to play ourselves???

Things We Have Learned

 Consistency is key!

 80 points all the time is better than 100 points half the time.

 K.I.S.S. (Keep It Super Simple)

Things We Have Learned

- CAD before you build.
 - By following the design process, you can greatly improve your designs.
- Frontload work
 - Put in the extra time first. Then you won't be scrambling right before competition.
- A good autonomous is essential.
 - 20 points is better than no points.
 - Leave time for programming the autonomous before competition.

Questions?

 These slides will be on our website in "Resources."

Find us on Facebook at Robo Raiders 7129

Robo Raiders FTC #7129 teamroboraiders@gmail.com

FTC #7129